

NO: USB Host Core Library VERSION: 1.0 PAGE: 1

USB Host Core Library

Ma, 2018

Preliminary Released

NO: USB Host Core Library VERSION: 1.0 PAGE: 2

Contents

1. USB Core Library Overview ... 3

2. Data Structures .. 4

2.1 USB_DEV_T ... 4

Table 2-1: Members of USB_DEV_T ... 5

2.2 Descriptor Structures ... 6

Table 2-2: Members of USB_DEV_DESC_T .. 8

Table 2-3: Members of USB_CONFIG_DESC_T ... 9

Table 2-4: Members of USB_IF_DESC_T ... 10

Table 2-5: Members of USB_EP_DESC_T ... 12

2.3 DEV_REQ_T .. 12

Table 2-6: Members of DEV_REQ_T ... 13

2.4 USB_DEV_ID_T .. 13

Table 2-7: Members of USB_DEV_ID_T ... 14

2.5 USB_DRIVER_T .. 16

Table 2-8: Members of USB_DRIVER_T .. 16

2.6 URB_T .. 17

3. Data Transfer ... 18

3.1 Pipe Control ... 18

3.2 Control Transfer .. 22

3.3 Bulk Transfer ... 25

3.4 Interrupt Transfer... 28

4. USB Library Provided API ... 30

 InitUsbSystem .. 30

 USB_RegisterDriver .. 31

 USB_DeregisterDriver .. 32

 USB_AllocateUrb .. 33

 USB_FreeUrb .. 34

 USB_SubmitUrb .. 35

 USB_UnlinkUrb .. 36

 USB_SendControlMessage .. 37

 USB_SendBulkMessage ... 38

 USB_malloc ... 39

 USB_free.. 40

NO: USB Host Core Library VERSION: 1.0 PAGE: 3

1. USB Core Library Overview

The USB Core library is composed of four major parts, which are OHCI driver,

EHCI driver, USB driver, and USB hub device driver. Each of these four drivers also

represents one of the three-layered USB driver layers. Figure 1-1 presents the driver

layers of the USB library.

NO: USB Host Core Library VERSION: 1.0 PAGE: 4

2. Data Structures

The USB Core library has included many complicated data structures to describe a

USB bus, a device, a driver, various descriptors, and so on. To realize these data

structures may be necessary for a USB device driver designer. In the following

sections, we will introduce all data structures you may need. These data structures are

all defined in header file <usb.h>.

2.1 USB_DEV_T

USB_DEV_T is the data structure used to represent a device instance. Once

the host finds that a device presented on a USB bus, the USB system software is

notified. The USB system software resets and enables the hub port to reset the

device. It then creates a USB_DEV_T for the newly detected device. For each

USB device presented on the bus, even the same device type, USB system

software will create a USB_DEV_T to represent it as an instance.

The contents of all members of USB_DEV_T are automatically assigned by

USB system software. The USB system software will assign a unique device

number, read device descriptor and configuration descriptors, and create

parent/child relationships. The definition of USB_DEV_T is listed below, and the

detailed descriptions can be found in Table 2-1.

typedef struct usb_device

{

 INT devnum;

 INT slow;

 enum

 {

 USB_SPEED_UNKNOWN = ,

 USB_SPEED_LOW,

 USB_SPEED_FULL,

 USB_SPEED_HIGH

 } speed;

 struct usb_tt *tt;

 INT ttport;

 INT refcnt;

 UINT32 toggle[2];

NO: USB Host Core Library VERSION: 1.0 PAGE: 5

 UINT32 halted[2];

 INT epmaxpacketin[16];

 INT epmaxpacketout[16];

 struct usb_device *parent;

 INT hub_port;

USB_BUS_T *bus;

 USB_DEV_DESC_T descriptor;

 USB_CONFIG_DESC_T *config;

 USB_CONFIG_DESC_T *actconfig;

 CHAR **rawdescriptors;

 INT have_langid;

 INT string_langid;

 VOID *hcpriv;

 INT maxchild;

 struct usb_device *children[USB_MAXCHILDREN];

} USB_DEV_T;

Table 2-1: Members of USB_DEV_T

Member Description

devnum Device number on USB bus; each device instance has a unique

device number

slow Is low speed device speed ? (1: yes; 0: no)

speed Device speed

refcnt Reference count (to count the number of users using the device)

toggle[2] Data toggle; one bit for each endpoint ([0] = IN, [1] = OUT)

halted[2] Endpoint halts; one bit for each endpoint ([0] = IN, [1] = OUT)

epmaxpacketin[16] IN endpoints specific maximum packet size (each entry represents for

an IN endpoint of this device)

epmaxpacketout[16] OUT endpoints specific maximum packet size (each entry represents

for an OUT endpoint of this device)

parent Parent device in the bus topology (generally, it should be a hub)

bus The bus on which this device was presented

descriptor Device descriptor

config All of the configuration descriptors

NO: USB Host Core Library VERSION: 1.0 PAGE: 6

actconfig The descriptor of the active configuration

rawdescriptors Raw descriptors for each configuration descriptor (driver can find

class specific or vendor specific descriptors from the rawdescriptors)

have_langid Whether string_langid is valid yet

string_langid Language ID for strings

hcpriv Host controller private data

maxchild Number of ports if this is a hub device

children[] Link to the downstream port device if this is a hub device

2.2 Descriptor Structures

In the USB_DEV_T structure, device descriptor, configuration descriptors,

and raw descriptor are included. The USB Driver will acquire these descriptors

from device automatically while the device is probed. The USB Driver issues

GET_DESCRIPTOR standard device request to acquire the configuration

descriptors. It also parses the returned descriptors to create configuration-

interface-endpoint descriptor links. Client software can obtain any configuration,

interface, or endpoint descriptors by tracing the descriptor link started from

USB_DEV_T. As USB Driver cannot understand class-specific and vendor-specific

descriptors, it does not create link for these descriptors. If the client software

wants to obtain any class-specific or vendor-specific descriptors, it can parse the

descriptors stored in raw descriptor, which is the original descriptors list returned

from the device. Table2-2, Table 2-3, Table 2-4, and Table 2-5 describe the

structures defined for device descriptors, configuration descriptors, interface

descriptors, and endpoint descriptors, respectively.

Figure 2-1 presents an overview on the relationship of these data structures.

From USB_DEV_T (device instance structure), USB_DEV_DEC_T (device

descriptor structure) and USB_CONFIG_DEC_T (configuration descriptor

structure), USB_IF_DESC_T (interface descriptor structure), to

USB_EP_DESC_T (endpoint descriptor structure), all structure entries are linked

in top-down order.

NO: USB Host Core Library VERSION: 1.0 PAGE: 7

/* Device descriptor */

typedef struct usb_device_descriptor

{

 __packed UINT8 bLength;

 __packed UINT8 bDescriptorType;

 __packed UINT16 bcdUSB;

 __packed UINT8 bDeviceClass;

 __packed UINT8 bDeviceSubClass;

NO: USB Host Core Library VERSION: 1.0 PAGE: 8

 __packed UINT8 bDeviceProtocol;

 __packed UINT8 bMaxPacketSize0;

 __packed UINT16 idVendor;

 __packed UINT16 idProduct;

 __packed UINT16 bcdDevice;

 __packed UINT8 iManufacturer;

 __packed UINT8 iProduct;

 __packed UINT8 iSerialNumber;

 __packed UINT8 bNumConfigurations;

} USB_DEV_DESC_T;

Table 2-2: Members of USB_DEV_DESC_T

Member Description

bLength Size of the descriptor in bytes

bDescriptorType DEVICE descriptor type (0x01)

bcdUSB USB specification release number in BCD format

bDeviceClass Device class code

bDeviceSubclass Device subclass code

bDeviceProtocol Protocol code

bMaxPacketSize0 Maximum packet size for endpoint zero

idVendor Vendor ID

idProduct Product ID

iManufacturer Device release number in BCD format

iProduct Index of string descriptor describing product

iSerialNumber Index of string descriptor describing the serial number

bNumConfigurations Number of possible configurations

You may have found that the definition of USB_DEV_DESC_T is fully

compliant to the definition of device descriptor defined in USB 1.1 specification. In

fact, the USB Driver acquires the device descriptor and fills it into this structure

without making any modifications.

NO: USB Host Core Library VERSION: 1.0 PAGE: 9

/* Configuration descriptor information.. */

typedef struct usb_config_descriptor

{

 __packed UINT8 bLength;

 __packed UINT8 bDescriptorType;

 __packed UINT16 wTotalLength;

 __packed UINT8 bNumInterfaces;

 __packed UINT8 bConfigurationValue;

 __packed UINT8 iConfiguration;

 __packed UINT8 bmAttributes;

 __packed UINT8 MaxPower;

 USB_IF_T *interface;

 UINT8 *extra;

 INT extralen;

} USB_CONFIG_DESC_T;

Table 2-3: Members of USB_CONFIG_DESC_T

Member Description

bLength Size of the descriptor in bytes

bDescriptorType CONFIGURATION descriptor type (0x02)

wTotalLength The total length of data returned for this descriptor

bNumInterfaces Number of interface supported by this configuration

bConfigurationValue Value to use as an argument to the SetConfiguration() request to

select the active configuration

iConfiguration Index of string descriptor describing this configuration

bmAttributes Bitmap describing the configuration characteristics

MaxPower Maximum power consumption of the USB device from the bus in this

specific configuration when the device is fully operational (in mA)

interface Refer to the interface descriptor list (recorded in USB_IF_DESC_T

structure format) returned by this configuration

extra Refer to the memory buffer preserve the raw data of this configuration

descriptor itself

extralen The length of the <extra> memory buffer

NO: USB Host Core Library VERSION: 1.0 PAGE: 10

The dev->config refers to a list of configurations supported by this device.

Client software can access any configuration by indexing the configuration, for

example, dev->config[0] is referred to the first configuration of this device. While

<config> of USB_DEV_T refers to the configuration list, <actconfig> refers to

the currently activated configuration. There can be only one configuration

activated at the same time.

The structure members from <bLength> to <MaxPower> are fully

compliant to that defined in USB 1.1 specification. The <interface> refers to a

list of interfaces supported by this configuration. In addition, USB Driver keeps

the interface descriptor itself in a dynamically allocated memory buffer, which is

referred to by <extra>, and the length of this memory buffer is <extralen>.

An interface may contain several alternate settings. Each alternate setting

has its own set of endpoints. USB Driver creates a single USB_IF_DESC_T

structure for each alternate interface setting and links them in the order that they

presented in the returned data of a configuration descriptor.

/* Interface descriptor */

typedef struct usb_interface_descriptor

{

 __packed UINT8 bLength;

 __packed UINT8 bDescriptorType;

 __packed UINT8 bInterfaceNumber;

 __packed UINT8 bAlternateSetting;

 __packed UINT8 bNumEndpoints;

 __packed UINT8 bInterfaceClass;

 __packed UINT8 bInterfaceSubClass;

 __packed UINT8 bInterfaceProtocol;

 __packed UINT8 iInterface;

 USB_EP_DESC_T *endpoint;

 UINT8 *extra;

 INT extralen;

} USB_IF_DESC_T;

Table 2-4: Members of USB_IF_DESC_T

Member Description

bLength Size of the descriptor in bytes

NO: USB Host Core Library VERSION: 1.0 PAGE: 11

bDescriptorType INTERFACE descriptor type (0x04)

bInterfaceNumber Number of interface. Zero-based value identifying the index in the

array of concurrent interfaces supported by this configuration.

bAlternateSetting Value used to select alternate setting for this interface

bNumEndpoints Number of endpoints used by this interface (excluding endpoint zero)

bInterfaceClass Class code

bInterfaceSubClass Subclass code

bInterfaceProtocol Protocol code

iInterface Index of string descriptor describing this interface

endpoint Refer to the endpoint descriptor list (recorded in USB_EP_DESC_T

structure format) of this interface returned by this configuration

extra Refer to the memory buffer preserve the raw data of this interface

descriptor itself

extralen The length of the <extra> memory buffer

The dev->config[n]->interface refers to a list of interfaces supported by

configuration n. The structure members from <bLength> to <iInterface> are

fully compliant to that defined in USB 1.1 specification. The <endpoint> refers to

a list of endpoints supported by this interface. In addition, USB Driver keeps the

interface descriptor itself in a dynamically allocated memory buffer, which is

referred to by <extra>, and the length of this memory buffer is <extralen>.

/* Endpoint descriptor */

typedef struct usb_endpoint_descriptor

{

 __packed UINT8 bLength;

 __packed UINT8 bDescriptorType;

 __packed UINT8 bEndpointAddress;

 __packed UINT8 bmAttributes;

 __packed UINT16 wMaxPacketSize;

 __packed UINT8 bInterval;

 __packed UINT8 bRefresh;

 __packed UINT8 bSynchAddress;

 UINT8 *extra;

 INT extralen;

NO: USB Host Core Library VERSION: 1.0 PAGE: 12

} USB_EP_DESC_T;

Table 2-5: Members of USB_EP_DESC_T

Member Description

bLength Size of the descriptor in bytes

bDescriptorType ENDPOINT descriptor type (0x05)

bEndpointAddress The address of this endpoint

bmAttributes Transfer type of this endpoint

wMaxPacketSize The maximum packet size this endpoint is capable of sending or

receiving

bInterval Interval for polling endpoint for data transfers (in milliseconds)

bRefresh Audio extensions to the endpoint descriptor

bSynchAddress Audio extensions to the endpoint descriptor

extra Refer to the memory buffer preserve the raw data of this endpoint

descriptor itself

extralen The length of the <extra> memory buffer

2.3 DEV_REQ_T

DEV_REQ_T is used to represent the eight bytes device request in a control

transfer. All device requests, including standard device requests, class-specific

device requests, and vendor-specific device requests, are written in the

DEV_REQ_T structure, which is also a member of a URB, and transferred to

device through the control pipe.

typedef struct

{

 __packed UINT8 requesttype;

 __packed UINT8 request;

 __packed UINT16 value;

NO: USB Host Core Library VERSION: 1.0 PAGE: 13

 __packed UINT16 index;

 __packed UINT16 length;

} DEV_REQ_T;

Table 2-6: Members of DEV_REQ_T

Member Description

requesttype Characteristics of request

request Specific request

value Word-sized field that varies according to request

index Word-sized field that varies according to request

length Number of bytes to transfer if there is a DATA stage

2.4 USB_DEV_ID_T

When the USB System Software detects a device being attached, it must find

out the corresponding device driver for each of its interface from the registered

driver list. It can try to invoke the probe() routine of each registered device

driver for each device interface, but this is not efficient and time-consuming. If

the USB System Software can make some simple judgment before trying invoking

a device driver, it will be better. This is the purpose of USB_DEV_ID_T. The USB

Library employ device ID to identify the appropriate device drivers.

When a device driver is registered to USB Driver, it may provide a device ID

table, which is structured in USB_DEV_ID_T format. In the device ID table,

driver can specify the characteristics of the USB device interface that the driver

would serve. If a driver does not provide a device ID table, then the USB Driver

will always try to invoke it when a new device is detected.

The device driver can use device ID table to specify several checks of

characteristics, including vendor ID, device ID, release number, device class,

device subclass, device protocol, interface class, interface subclass, and interface

protocol. The device driver can specify one or more checks. The more checks are

NO: USB Host Core Library VERSION: 1.0 PAGE: 14

specified, the more specific device interface can be identified. Table 2-7 lists the

entries of device ID table.

typedef struct usb_device_id

{

 UINT16 match_flags;

 UINT16 idVendor;

 UINT16 idProduct;

 UINT16 bcdDevice_lo;

 UINT16 bcdDevice_hi;

 UINT8 bDeviceClass;

 UINT8 bDeviceSubClass;

 UINT8 bDeviceProtocol;

 UINT8 bInterfaceClass;

 UINT8 bInterfaceSubClass;

 UINT8 bInterfaceProtocol;

 UINT32 driver_info;

} USB_DEV_ID_T;

Table 2-7: Members of USB_DEV_ID_T

Member Description

matchflag A bitmask of flags, used to determine which of the following items are

to be used for matching

idVendor Used to compare the vendor ID recorded in device descriptor

idProduct Used to compare the product ID recorded in device descriptor

bcdDevice_lo Specify the low limit of device release number

bcdDevice_hi Specify the high limit of device release number

bDeviceClass Used to compare the class code in device descriptor

bDeviceSubClass Used to compare the subclass code in device descriptor

bDeviceProtocol Used to compare the protocol code in device descriptor

bInterfaceClass Used to compare the class code in interface descriptor

bInterfaceSubClass Used to compare the subclass code in interface descriptor

bInterfaceProtocol Used to compare the protocol code in interface descriptor

NO: USB Host Core Library VERSION: 1.0 PAGE: 15

There are 10 check items can be used to identify a specific type of device. To

select which of these check items should be used to identify a device type is

controlled by the <matchflag> member, which is a 16bits bit-mask flag. Each bit

of < matchflag > is corresponding to one of these check items. The bit-map

definition of < matchflag > is defined as the followings:

#define USB_DEVICE_ID_MATCH_VENDOR 0x0001

#define USB_DEVICE_ID_MATCH_PRODUCT 0x0002

#define USB_DEVICE_ID_MATCH_DEV_LO 0x0004

#define USB_DEVICE_ID_MATCH_DEV_HI 0x0008

#define USB_DEVICE_ID_MATCH_DEV_CLASS 0x0010

#define USB_DEVICE_ID_MATCH_DEV_SUBCLASS 0x0020

#define USB_DEVICE_ID_MATCH_DEV_PROTOCOL 0x0040

#define USB_DEVICE_ID_MATCH_INT_CLASS 0x0080

#define USB_DEVICE_ID_MATCH_INT_SUBCLASS 0x0100

#define USB_DEVICE_ID_MATCH_INT_PROTOCOL 0x0200

For convenience of driver implementation, the USB library also provides

some useful macros that facilitate the development of device driver. These

macros are all listed in the followings, you can also define your own macros:

/* Some useful macros */

#define USB_DEVICE(vend,prod) \

 { USB_DEVICE_ID_MATCH_DEVICE, vend, prod, 0, 0,

 0, 0, 0, 0, 0, 0, 0 }

#define USB_DEVICE_VER(vend,prod,lo,hi) \

 { USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, vend,

 prod, lo, hi, 0, 0, 0, 0, 0, 0, 0 }

#define USB_DEVICE_INFO(cl,sc,pr) \

 { USB_DEVICE_ID_MATCH_DEV_INFO, 0, 0, 0, 0, cl,

 sc, pr, 0, 0, 0, 0 }

#define USB_INTERFACE_INFO(cl,sc,pr) \

 { USB_DEVICE_ID_MATCH_INT_INFO, 0, 0, 0, 0, 0,

 0, 0, cl, sc, pr, 0 }

NO: USB Host Core Library VERSION: 1.0 PAGE: 16

2.5 USB_DRIVER_T

The USB library has defined a generalized structure for all USB device

drivers. To implement a USB device driver based on this library, you must create

such a structure and register it to the USB Driver. Once you have registered your

device driver, the USB Driver can determine whether to launch your driver when

a new device is attached.

As we will give detail introduction to the implementation of USB device driver,

we only briefly describe the members of USB_DRIVER_T as following:

typedef struct usb_device_id

{

 UINT16 match_flags;

 UINT16 idVendor;

 UINT16 idProduct;

 UINT16 bcdDevice_lo;

 UINT16 bcdDevice_hi;

 UINT8 bDeviceClass;

 UINT8 bDeviceSubClass;

 UINT8 bDeviceProtocol;

 UINT8 bInterfaceClass;

 UINT8 bInterfaceSubClass;

 UINT8 bInterfaceProtocol;

 UINT32 driver_info;

} USB_DEV_ID_T;

Table 2-8: Members of USB_DRIVER_T

Member Description

matchflag A bitmask of flags, used to determine which of the following items are

to be used for matching

idVendor Used to compare the vendor ID recorded in device descriptor

idProduct Used to compare the product ID recorded in device descriptor

bcdDevice_lo Specify the low limit of device release number

NO: USB Host Core Library VERSION: 1.0 PAGE: 17

bcdDevice_hi Specify the high limit of device release number

bDeviceClass Used to compare the class code in device descriptor

bDeviceSubClass Used to compare the subclass code in device descriptor

bDeviceProtocol Used to compare the protocol code in device descriptor

bInterfaceClass Used to compare the class code in interface descriptor

bInterfaceSubClass Used to compare the subclass code in interface descriptor

bInterfaceProtocol Used to compare the protocol code in interface descriptor

2.6 URB_T

USB specification has defined four transfer type: control, bulk, interrupt, and

isochronous. In the USB library, all these four transfer types are accomplished by

URB (USB Request Block). Please refer to Chapter 3 for details about the

implementation of each transfer type by using URB.

NO: USB Host Core Library VERSION: 1.0 PAGE: 18

3. Data Transfer

USB specification defines four transfer types, control, bulk, interrupt, and

isochronous. The USB device driver performs data transfers by preparing an URB and

transfer it to the underlying USB system software. The URBs are designed to be

accommodated with all four transfer types. By configuring the URB, USB device driver

can specify the destination device interface and endpoint, the data buffer and data

length to be transferred, the callback routine on completion, and other detail

information. USB device driver passed the URB to the underlying USB system software,

which will interpret the URB and accomplish the data transfers by initiating USB

transactions between USB Host Controller and the target device endpoint.

URB has been designed to be accommodated with all four USB data transfer types.

Due to the characteristics of different transfer types, various requirements must be

satisfied to fulfill the transfer. For example, URB contains <setup_packet> for control

transfer, <interval> for interval transfer, <start_frame> and

<number_of_packets> for isochronous transfer, and <transfer_buffer> for all

transfers. To implement a USB device driver, the programmers use URBs to

accomplish all data transfers to all of the various endpoints.

For a specific endpoint, after delivering a URB to the underlying USB system

software, the USB device driver must not deliver another URB to the same endpoint

until the current transfer was done by the USB system software. That is, the driver

must be blocked in waiting completion of the URB. URB includes a <complete>

function pointer to solve the block waiting issue. The USB device driver provided a

callback function and have <complete> pointer being referred to the callback function.

On completion of this URB, the USB system software will invoke the callback function.

Thus, the USB device driver was notified with the completion event, and can stop

waiting. Note that the callback functions are invoked from an HISR, the execution time

must be as short as possible.

3.1 Pipe Control

Before delivering an URB, the USB device driver must determine which

device and which endpoint the URB will operate on. This destination device and

endpoint is determined by <pipe> of URB. <pipe> is actually a 32-bits unsigned

integer. The USB library defined pipe structure with a 32-bits unsigned integer.

NO: USB Host Core Library VERSION: 1.0 PAGE: 19

The USB library has defined several useful macros for pipe control. The pipe is

defined as the followings:

31 30 29 28 27 26 25 24

Pipe Type Reserved Speed Reserved

23 22 21 20 19 18 17 16

Reserved Data0/1 Endpoint

15 14 13 12 11 10 9 8

 Device

7 6 5 4 3 2 1 0

Direction Reserved Max Size

Max Size [1 .. 0]

The maximum packet size. This field has been obsoleted. Now the maximum

packet size is recorded in <epmaxpacketin> and <epmaxpacketout> fields of

USB_DEV_T.

Direction[7]

Direction of data transfer. 0 = Host-to-Device [out]; 1 = Device-to-Host [in]

Device[8 .. 14]

Device number. This is the unique device address, which is assigned by Host

Controller driver by SET_ADDRESS standard request. With this unique device

number, the USB device driver can correctly locate the target device.

Endpoint[15 .. 18]

Endpoint number. This is the endpoint number on the target device, that the pipe

is created with. By definition, a pipe corresponds to a unique endpoint on a

unique device. By determining the device number and endpoint number, USB

device driver can uniquely identify a specific endpoint of a specific device.

Data0/1[19]

Data toggle Data0/Data1. This bit is used to record the current data toggle

condition.

NO: USB Host Core Library VERSION: 1.0 PAGE: 20

Speed[26]

Endpoint transfer speed. 1 = Low speed; 0 = Full speed.

Pipe Type[30 .. 31]

Transfer type. 00 = isochronous; 01 = interrupt; 10 = control; 11 = bulk.

The USB library has provided a lot of macros facilities for USB device driver

designer. The device driver can use the facilities to rescuer the trouble of

managing bit fields. These macros are listed in the followings:

Transfer Type

#define PIPE_ISOCHRONOUS 0

#define PIPE_INTERRUPT 1

#define PIPE_CONTROL 2

#define PIPE_BULK 3

#define usb_pipetype(pipe) (((pipe) >> 30) & 3)

#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)

#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)

#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)

#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)

Maximum Packet Size

#define usb_maxpacket(dev, pipe, out) (out \

 ? (dev)->epmaxpacketout[usb_pipeendpoint(pipe)] \

 : (dev)->epmaxpacketin [usb_pipeendpoint(pipe)])

Direction

#define usb_packetid(pipe) (((pipe) & USB_DIR_IN) ? \

 USB_PID_IN : USB_PID_OUT)

#define usb_pipeout(pipe) ((((pipe) >> 7) & 1) ^ 1)

#define usb_pipein(pipe) (((pipe) >> 7) & 1)

Device Number

#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)

#define usb_pipe_endpdev(pipe) (((pipe) >> 8) & 0x7ff)

NO: USB Host Core Library VERSION: 1.0 PAGE: 21

Endpoint Number

#define usb_pipe_endpdev(pipe) (((pipe) >> 8) & 0x7ff)

#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)

Data Toggle

#define usb_pipedata(pipe) (((pipe) >> 19) & 1)

#define usb_gettoggle(dev, ep, out) \

 (((dev)->toggle[out] >> ep) & 1)

#define usb_dotoggle(dev, ep, out) \

 ((dev)->toggle[out] ^= (1 << ep))

#define usb_settoggle(dev, ep, out, bit) \

 ((dev)->toggle[out] = \

 ((dev)->toggle[out] & ~(1 << ep)) | \

 ((bit) << ep))

Speed

#define usb_pipeslow(pipe) (((pipe) >> 26) & 1)

Pipe Creation

static __inline UINT32 __create_pipe(USB_DEV_T *dev, UINT32 endpoint)

{

 return (dev->devnum << 8) | (endpoint << 15) | (dev->slow << 26);

}

static __inline UINT32 __default_pipe(USB_DEV_T *dev)

{

 return (dev->slow << 26);

}

NO: USB Host Core Library VERSION: 1.0 PAGE: 22

/* Create various pipes... */

#define usb_sndctrlpipe(dev,endpoint) \

 (0x80000000 | __create_pipe(dev,endpoint))

#define usb_rcvctrlpipe(dev,endpoint) \

 (0x80000000 | __create_pipe(dev,endpoint) | USB_DIR_IN)

#define usb_sndisocpipe(dev,endpoint) \

 (0x00000000 | __create_pipe(dev,endpoint))

#define usb_rcvisocpipe(dev,endpoint) \

 (0x00000000 | __create_pipe(dev,endpoint) | USB_DIR_IN)

#define usb_sndbulkpipe(dev,endpoint) \

 (0xC0000000 | __create_pipe(dev,endpoint))

#define usb_rcvbulkpipe(dev,endpoint) \

 (0xC0000000 | __create_pipe(dev,endpoint) | USB_DIR_IN)

#define usb_sndintpipe(dev,endpoint) \

 (0x40000000 | __create_pipe(dev,endpoint))

#define usb_rcvintpipe(dev,endpoint) \

 (0x40000000 | __create_pipe(dev,endpoint) | USB_DIR_IN)

#define usb_snddefctrl(dev) \

 (0x80000000 | __default_pipe(dev))

#define usb_rcvdefctrl(dev) \

 (0x80000000 | __default_pipe(dev) | USB_DIR_IN)

3.2 Control Transfer

IN this section, we will introduce how to make control transfers by URBs. A

control transfer is accomplished by sending a device request to the control

endpoint of the target device. Depend on the request sent to device, there may

be data stage or not.

The URB provided a <setup_packet> field to accommodate the device

request command. The USB device driver must have the <setup_packet> of its

URB being referred to an <unsigned char> array, which contained the device

request command to be transferred. Note that <setup_packet> is designed to

be used with control transfer.

If a device request included data stage, the data to be transferred must be

referred to by the <transfer_buffer> pointer of URB. If the device request

required data to be sent from Host to Device, the USB device driver must prepare

NO: USB Host Core Library VERSION: 1.0 PAGE: 23

a DMA buffer (non-cacheable) and fill the data to be transferred into this buffer.

Then, the USB device driver have <transfer_buffer> pointer refer to this buffer,

and specify the length of the buffer with <transfer_buffer_length> of the URB.

If the device request requires data to be sent from Device to Host, the USB

device driver must prepare a DMA buffer to receive the data from Device. Again,

the USB device driver used <transfer_buffer> and

<Transfer_buffer_length> to describe its DMA buffer. The <actual_length> is

written by USB system software to tell the device driver how many bytes are

actually transferred.

The USB device driver also has to prepare a callback function to be invoked

by the USB system software. The callback function will be invoked on the

completion of URB, in spite of success or fail. Generally, the callback function is

responsible for waking up the task that delivered the URB. The callback function

may also check the status of the URB to determine the transfer is successful or

not. The following is an example of control transfer.

static VOID ctrl_callback(URB_T *urb)

{

 PEGASUS_T *pegasus = urb->context;

 switch (urb->status)

 {

 case USB_ST_NOERROR:

 if (pegasus->flags & ETH_REGS_CHANGE)

 {

 pegasus->flags &= ~ETH_REGS_CHANGE;

 pegasus->flags |= ETH_REGS_CHANGED;

 update_eth_regs_async(pegasus);

 return;

 }

 break;

 case USB_ST_URB_PENDING:

 return;

 case USB_ST_URB_KILLED:

 break;

 default:

 printf("Warning - status %d\n", urb->status);

 }

NO: USB Host Core Library VERSION: 1.0 PAGE: 24

 pegasus->flags &= ~ETH_REGS_CHANGED;

 if (pegasus->flags & CTRL_URB_SLEEP)

 {

 pegasus->flags &= ~CTRL_URB_SLEEP;

 NU_Set_Events(&pegasus->events, 1, NU_OR); /* set event */

 }

}

static INT get_registers(PEGASUS_T *pegasus, UINT16 indx, UINT16 size,

VOID *data)

{

 INT ret;

 UINT8 *dma_data;

 while (pegasus->flags & ETH_REGS_CHANGED)

 {

 pegasus->flags |= CTRL_URB_SLEEP;

 USB_printf("ETH_REGS_CHANGED waiting...\n");

 NU_Retrieve_Events(&pegasus->events, 1, NU_AND,

 (unsigned long *)&ret, NU_SUSPEND);

 }

 dma_data = (UINT8 *)USB_malloc(size, BOUNDARY_WORD);

 if (!dma_data)

 return -ENOMEM;

 pegasus->dr->requesttype = PEGASUS_REQT_READ;

 pegasus->dr->request = PEGASUS_REQ_GET_REGS;

#ifdef LITTLE_ENDIAN

 pegasus->dr->value = 0;

 pegasus->dr->index = indx;

 pegasus->dr->length = size;

#else

 pegasus->dr->value = USB_SWAP16(0);

 pegasus->dr->index = USB_SWAP16(indx);

 pegasus->dr->length = USB_SWAP16(size);

#endif

 pegasus->ctrl_urb.transfer_buffer_length = size;

NO: USB Host Core Library VERSION: 1.0 PAGE: 25

 FILL_CONTROL_URB(&pegasus->ctrl_urb, pegasus->usb,

 usb_rcvctrlpipe(pegasus->usb,0),

 (UINT8 *)pegasus->dr,

 dma_data, size, ctrl_callback, pegasus);

 pegasus->flags |= CTRL_URB_SLEEP;

 NU_Set_Events(&pegasus->events, 0, NU_AND); /* clear event */

 USB_SubmitUrb(&pegasus->ctrl_urb);

 NU_Retrieve_Events(&pegasus->events, 1, NU_AND,

 (unsigned long *)&ret, NU_SUSPEND);

 memcpy(data, dma_data, size);

out:

 USB_free(dma_data);

 return ret;

}

In the above example, the device driver first prepare the device request

command in <pegasus->dr>, which was later referred to by <urb-

>setup_packet>. It request a buffer for DMA transfer by USB_malloc(). Note

that USB_malloc() will allocate a non-cacheable memory buffer. It then created

a Control-In pipe by using usb_rcvctrlpipe macro, and the endpoint number is 0.

The device driver the use the FILL_CONTROL_URB macro facility to fill the URB.

The callback function is ctrl_callback(), which is provided by the device driver

itself. After submitting the URB, the caller task suspend on waiting the <pegasus-

>events> event set. On completion of this URB, the USB system software will

invoke ctrl_callback(), and ctrl_callback() will set the <pegasus->events>

event to wake up the caller task.

3.3 Bulk Transfer

IN this section, we will introduce how to make bulk transfers by URBs. The

URB provided <transfer_buffer> and <transfer_buffer_length> to

accommodate data to be transferred to or from device. The direction of transfer is

determined by the direction bit of bulk pipe. The transfer length is unlimited. If

you are familiar with OpenHCI specification, you may understand that the

NO: USB Host Core Library VERSION: 1.0 PAGE: 26

maximum transfer size of a bulk transfer is 4096 bytes. If the transfer length of

your URB exceeds 4096 bytes, the USB system software will split it into several

transfer units smaller than 4096 bytes. Thus, you can specify unlimited transfer

buffer length, only the physical memory can limit the size.

The transfer buffer must be non-cacheable. A designer can use

USB_malloc() to acquire a block of non-cacheable memory.

The USB device driver also has to prepare a callback function to be invoked

by the USB system software. The callback function will be invoked on the

completion of URB, in spite of success or fail. Generally, the callback function is

responsible for waking up the task that delivered the URB. The callback function

may also check the status of the URB to determine the transfer is successful or

not. The following is an example of bulk transfer.

/* In Host Controller HISR context */

static VOID write_bulk_callback(URB_T *urb)

{

 PEGASUS_T *pegasus = urb->context;

 STATUS previous_int_value;

 DV_DEVICE_ENTRY *device;

 _PegasusDevice->tx_ready = 1;

 /* Get a pointer to the device. */

 device = DEV_Get_Dev_By_Name("Pegasus");

 /* Lock out interrupts. */

 previous_int_value = NU_Control_Interrupts(NU_DISABLE_INTERRUPTS);

 DEV_Recover_TX_Buffers(device);

 /* If there is another item on the list, transmit it. */

 if (device->dev_transq.head)

 {

 /* Re-enable interrupts */

 NU_Control_Interrupts(previous_int_value);

 /* Transmit the next packet. */

 PegasusTransmit(device, device->dev_transq.head);

 }

 /* Re-enable interrupts. */

NO: USB Host Core Library VERSION: 1.0 PAGE: 27

 NU_Control_Interrupts(previous_int_value);

 if (urb->status)

 USB_printf("write_bulk_callback - TX error status: %d\n",

 urb->status);

}

STATUS PegasusTransmit(DV_DEVICE_ENTRY *dev, NET_BUFFER *netBuffer)

{

 INT ret, wait=0;

 UINT8 *buf_ptr;

 INT totalLength = 0;

 while (!_PegasusDevice->tx_ready)

 {

 NU_Sleep(1); /* wait on any outgoing Tx */

 if (wait++ > NU_PLUS_Ticks_Per_Second)

 {

 USB_printf("Can't transmit packet!\n");

 return NU_IO_ERROR;

 }

 }

 buf_ptr = _PegasusDevice->tx_buff + 2;

 do

 {

 memcpy(buf_ptr, netBuffer->data_ptr, netBuffer->data_len);

 totalLength += netBuffer->data_len;

 buf_ptr += netBuffer->data_len;

 /* Move on to the next buffer. */

 netBuffer = netBuffer->next_buffer;

 } while (netBuffer != 0);

 /* The first two bytes record the packet length. */

 buf_ptr = _PegasusDevice->tx_buff;

 buf_ptr[0] = totalLength & 0xff;

 buf_ptr[1] = (totalLength >> 8) & 0xff;

NO: USB Host Core Library VERSION: 1.0 PAGE: 28

 FILL_BULK_URB(&_PegasusDevice->tx_urb, _PegasusDevice->usb,

 usb_sndbulkpipe(_PegasusDevice->usb, 2),

 (CHAR *)buf_ptr, PEGASUS_MAX_MTU,

 write_bulk_callback, _PegasusDevice);

 _PegasusDevice->tx_urb.transfer_buffer_length =

 ((totalLength+2) & 0x3f) ? totalLength+2 : totalLength+3;

 _PegasusDevice->tx_ready = 0;

 USB_SubmitUrb(&_PegasusDevice->tx_urb);

 return NU_SUCCESS;

}

3.4 Interrupt Transfer

IN this section, we will introduce how to make interrupt transfers by URBs.

The URB provided <transfer_buffer> and <transfer_buffer_length> to

accommodate data to be transferred to or from device, and <interval> to

specify polling interval of the interrupt transfer. The direction of transfer is

determined by the direction bit of interrupt pipe. The transfer length is dependent

on target interrupt endpoint.

The transfer buffer must be non-cacheable. A designer can use

USB_malloc() to acquire a block of non-cacheable memory.

The USB device driver also has to prepare a callback function to be invoked

by the USB system software. The callback function will be invoked if there’s data

received in one of the interrupt interval. In the callback function, USB device

driver can read <transfer_buffer> to retrieve received interrupt data. The USB

device driver have not to modify URB or resend URB. The USB library will resend

the interrupt URB after callback. The interrupt URB will not stop until hardware

failure or explicitly deleted by the USB device driver.

static VOID intr_callback(URB_T *urb)

{

NO: USB Host Core Library VERSION: 1.0 PAGE: 29

 PEGASUS_T *pegasus = urb->context;

 UINT8 *d;

 if (!pegasus)

 return;

 switch (urb->status)

 {

 case USB_ST_NOERROR:

 break;

 case USB_ST_URB_KILLED:

 return;

 default:

 break;

 }

 d = urb->transfer_buffer;

 if (d[2] & 0x1)

 UART_printf("Rx error - overflow!!\n");

}

 FILL_INT_URB(&_PegasusDevice->intr_urb, _PegasusDevice->usb,

 usb_rcvintpipe(_PegasusDevice->usb, 3),

 (CHAR *)&_PegasusDevice->intr_buff[0], 8,

 intr_callback, _PegasusDevice,

 _PegasusDevice->intr_interval);

 res = USB_SubmitUrb(&_PegasusDevice->intr_urb);

 if (res)

 UART_printf("pegasus_open - failed intr_urb %d\n", res);

NO: USB Host Core Library VERSION: 1.0 PAGE: 30

4. USB Library Provided API

 InitUsbSystem

Prototype INT InitUsbSystem (VOID)

Description Initialize the USB hardware and USB core library. This function must be invoked

before any other functions. The USB library will scan device at this time, but

the device will not be activated until the corresponding device driver was

registered by USB_RegisterDriver().

Input None

Output None

Return 0 - Success

Otherwise - Failure

See also

Example code /*

 * Initialize USBD, HC driver, hub driver, and register all other

 * USB device drivers.

 */

InitUsbSystem();

UMAS_InitUmasDriver();

UsbPrinter_Init();

NO: USB Host Core Library VERSION: 1.0 PAGE: 31

 USB_RegisterDriver

Prototype INT USB_RegisterDriver (USB_DRIVER_T *driver)

Description Register a device driver with the USB library. In this function, USB library

will also try to associate the newly registered device driver with all

connected USB devices that have no device driver associated with it. Note that

a connected USB device can be detected by USB library but may not work until it

was associated with its corresponding device driver.

Input <driver> - The USB device driver to be registered with USB core library

Output None

Return 0 - Success

Otherwise - Failure

See also USB_DeregisterDriver

Example code static USB_DRIVER_T usblp_driver =

{

 "usblp",

 usblp_probe,

 usblp_disconnect,

 {NULL,NULL},

 {0},

 NULL,

 usblp_ids,

 NULL,

 NULL

};

INT UsbPrinter_Init() {

 if (USB_RegisterDriver(&usblp_driver)) return -1;

 return 0;

}

NO: USB Host Core Library VERSION: 1.0 PAGE: 32

 USB_DeregisterDriver

Prototype VOID USB_DeregisterDriver(USB_DRIVER_T *driver)

Description Deregister a device driver

Input <driver> - The device driver to be deregistered

Output None

Return 0 - Success

Otherwise - Failure

See also USB_RegisterDriver

Example code VOID UsbPrinter_Exit()

{

 USB_DeregisterDriver(&usblp_driver);

}

NO: USB Host Core Library VERSION: 1.0 PAGE: 33

 USB_AllocateUrb

Prototype URB_T *USB_AllocateUrb(INT iso_packets)

Description Creates an urb for the USB driver to use and returns a pointer to it. The

driver should call USB_FreeUrb() when it is finished with the urb.

Input <iso_packets> - The number of isochronous frames in a single URB. For other

transfer types, this value must be zero.

Output None

Return NULL - Failure

Otherwise - A pointer to the newly allocated URB

See also USB_FreeUrb, USB_SubmitUrb, USB_UnlinkUrb

Example code _W99683_Camera->sbuf[i].urb = USB_AllocateUrb(FRAMES_PER_DESC);

 if (_W99683_Camera->sbuf[i].urb == NULL)

 {

 UART_printf("%s - USB_AllocateUrb(%d.) failed.\n", proc,

 FRAMES_PER_DESC);

 Return -1;

 }

NO: USB Host Core Library VERSION: 1.0 PAGE: 34

 USB_FreeUrb

Prototype VOID USB_FreeUrb(URB_T *urb)

Description Frees the memory used by a urb

Input <urb> - pointer to the URB to free

Output None

Return None

See also USB_AllocateUrb, USB_SubmitUrb, USB_UnlinkUrb

Example code

NO: USB Host Core Library VERSION: 1.0 PAGE: 35

 USB_SubmitUrb

Prototype INT USB_SubmitUrb(URB_T *urb)

Description Submit a URB for executing data transfer

Input <urb> - Pointer to the URB to be serviced

Output None

Return 0 - Success

Otherwise - Failure

See also USB_AllocateUrb, USB_FreeUrb, USB_UnlinkUrb

Example code /* prepare URB */

FILL_BULK_URB(&_PegasusDevice->tx_urb, _PegasusDevice->usb,

 usb_sndbulkpipe(_PegasusDevice->usb, 2),(CHAR *)buf_ptr, PEGASUS_MAX_MTU,

 write_bulk_callback, _PegasusDevice);

/* set the data length to be transferred */

_PegasusDevice->tx_urb.transfer_buffer_length =

 ((totalLength+2) & 0x3f) ? totalLength+2 : totalLength+3;

_PegasusDevice->tx_ready = 0;

/* submit URB */

if (USB_SubmitUrb(&_PegasusDevice->tx_urb) != 0)

{

 UART_printf("Warning - failed tx_urb %d\n", ret);

 return NU_IO_ERROR;

}

NO: USB Host Core Library VERSION: 1.0 PAGE: 36

 USB_UnlinkUrb

Prototype INT USB_UnlinkUrb(URB_T *urb)

Description Unlink a URB which has been submitted but not finished

Input <urb> - pointer to the URB to be unlinked

Output None

Return 0 - Success

Otherwise - Failure

See also USB_AllocateUrb, USB_FreeUrb, USB_SubmitUrb

Example code INT PegasusClose()

{

 _PegasusDevice->flags &= ~PEGASUS_RUNNING;

 if (!(_PegasusDevice->flags & PEGASUS_UNPLUG))

 disable_net_traffic(_PegasusDevice);

 USB_UnlinkUrb(&_PegasusDevice->rx_urb);

 USB_UnlinkUrb(&_PegasusDevice->tx_urb);

 USB_UnlinkUrb(&_PegasusDevice->ctrl_urb);

#ifdef PEGASUS_USE_INTR

 USB_UnlinkUrb(&_PegasusDevice->intr_urb);

#endif

 return 0;

}

NO: USB Host Core Library VERSION: 1.0 PAGE: 37

 USB_SendControlMessage

Prototype INT USB_SendControlMessage(USB_DEV_T *dev, UINT32 pipe, UINT8 request,

 UINT8 rtype, UINT16 value, UINT16 index, V

 OID *data, UINT16 size, INT timeout)

Description Builds a control urb, sends it off and waits for completion. This function

sends a simple control message to a specified endpoint and waits for the

message to complete, or timeout. Don't use this function from within an

interrupt context.

Input <dev> - pointer to the usb device to send the message to

<pipe> - endpoint "pipe" to send the message to

<request>- USB message request value

<rtypr> - USB message request type value

<value> - USB message value

<index> - USB message index value

<data> - pointer to the data to send

<size> - length in bytes of the data to send

<timeout>- time to wait for the message to complete before timing out (if 0 the

 wait is forever)

Output None

Return 0 - Success

Otherwise - Failure

See also USB_SendBulkMessage

Example code dma_data = USB_malloc(len, BOUNDARY_WORD);

retval = USB_SendControlMessage(usblp->dev,

 dir ? usb_rcvctrlpipe(usblp->dev, 0) : usb_sndctrlpipe(usblp->dev, 0),

 request, USB_TYPE_CLASS | dir | recip, value, usblp->ifnum, dma_data,

 len, HZ * 5);

memcpy(buf, dma_data, len);

USB_free(dma_data);

NO: USB Host Core Library VERSION: 1.0 PAGE: 38

 USB_SendBulkMessage

Prototype INT USB_SendBulkMessage(USB_DEV_T *dev, UINT32 pipe, VOID *data,

 INT len, INT *actual_length, INT timeout)

Description Builds a bulk urb, sends it off and waits for completion. This function sends a

simple bulk message to a specified endpoint and waits for the message to

complete, or timeout. Don't use this function from within an interrupt context.

Input <dev> - pointer to the usb device to send the message to

<pipe> - endpoint "pipe" to send the message to

<data> - pointer to the data to send

<len> - length in bytes of the data to send

<actual_length> - pointer to a location to put the actual length transferred in

 bytes

<timeout>- time to wait for the message to complete before timing out (if 0 the

 wait is forever)

Output None

Return 0 - Success

Otherwise - Failure

See also USB_SendControlMessage

Example code if (!pb->pipe)

 pipe = usb_rcvbulkpipe (s->usbdev, 2);

 else

 pipe = usb_sndbulkpipe (s->usbdev, 2);

 ret = USB_SendBulkMessage(s->usbdev, pipe, pb->data, pb->size, &actual_length, 100);

 if (ret<0) {

 err("dabusb: usb_bulk_msg failed(%d)",ret);

 if (usb_set_interface (s->usbdev, _DABUSB_IF, 1) < 0) {

 err("set_interface failed");

 return -EINVAL;

 }

 }

NO: USB Host Core Library VERSION: 1.0 PAGE: 39

 USB_malloc

Prototype VOID *USB_malloc(INT wanted_size, INT boundary)

Description Allocate a non-cacheable memory block started from assigned boundary. The total

size of the USB library managed memory block is 256KB.

Input <wanted_size> - The wanted size of non-cacheable memory block

<boundary> - The start address boundary of the memory block. It cab be

 BOUNDARY_BYTE, BOUNDARY_HALF_WORD, BOUNDARY_WORD, BOUNDARY32,

 BOUNDARY64, BOUNDARY128, BOUNDARY256, BOUNDARY512, BOUNDARY1024,

 BOUNDARY2048, BOUNDARY4096

Output None

Return NULL - Failed, there is not enough memory or USB library is not started

Otherwise - pointer to the newly allocated memory block

See also USB_free

Example code UINT8 *dma_data;

 dma_data = USB_malloc(len, BOUNDARY_WORD);

 if (dma_data == NULL) {

 NU_printf("usblp_ctrl_msg - Memory not enough!\n");

 return -1;

 }

 retval = USB_SendControlMessage(usblp->dev,

 dir ? usb_rcvctrlpipe(usblp->dev, 0) : usb_sndctrlpipe(usblp->dev, 0),

 request, USB_TYPE_CLASS | dir | recip, value, usblp->ifnum, dma_data,

 len, HZ * 5);

 memcpy(buf, dma_data, len);

 USB_free(dma_data);

NO: USB Host Core Library VERSION: 1.0 PAGE: 40

 USB_free

Prototype VOID USB_free(VOID *alloc_addr)

Description Free the memory block allocated by USB_malloc()

Input <alloc_addr> - pointer to the USB_malloc() allocated memory block to be freed

Output None

Return None

See also USB_malloc

Example code See USB_malloc()

